ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-13
    Description: A computational investigation was performed to assess the effectiveness of Detached-Eddy Simulation (DES) as a tool for predicting icing effects. The AVUS code, a public domain flow solver, was employed to compute solutions for an iced wing configuration using DES and steady Reynolds Averaged Navier-Stokes (RANS) equation methodologies. The configuration was an extruded GLC305/944-ice shape section with a rectangular planform. The model was mounted between two walls so no tip effects were considered. The numerical results were validated by comparison with experimental data for the same configuration. The time-averaged DES computations showed some improvement in lift and drag results near stall when compared to steady RANS results. However, comparisons of the flow field details did not show the level of agreement suggested by the integrated quantities. Based on our results, we believe that DES may prove useful in a limited sense to provide analysis of iced wing configurations when there is significant flow separation, e.g., near stall, where steady RANS computations are demonstrably ineffective. However, more validation is needed to determine what role DES can play as part of an overall icing effects prediction strategy. We conclude the report with an assessment of existing computational tools for application to the iced wing problem and a discussion of issues that merit further study.
    Keywords: Aerodynamics
    Type: NASA/CR-2004-213379 , E-14887
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...