ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-18
    Description: In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.
    Keywords: Electronics and Electrical Engineering
    Type: 2004 Conference on Advances in Internet Technologies and Applications (CAITA); Jul 08, 2004 - Jul 11, 2004; West Lafayette, IN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...