ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: The Magnetospheric Multiscale Mission (MMS) is a NASA mission intended to make fundamental advancements in our understanding of the Earth's Magnetosphere. There are three processes that MMS will study including magnetic reconnection, charged particle acceleration, and turbulence. There are four phases in the nominal mission and this work addresses some of the outstanding issues in phase I. The nominal phase I orbit is 1.2 x 12 R(sub e) highly elliptic orbit with four spacecraft nominally forming a regular tetrahedron. In this paper we investigate the relative dynamics of the four MMS spacecraft about an assumed reference orbit. There are several tetrahedron dimensions required in Phase I of the mission and in this work we design optimal tetrahedrons for the 10 km baseline. The performance metric used in the optimization process is directly related to the science return, and is based on an extension of previous work performed by Glassmeier. The optimizer we use is a commercially available Sequential Quadratic Programming (SQP) routine. Multiple optimal solutions are found, and we characterize how the performance of the formation varies between different regions of the reference orbit.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC Flight Mechanics Symposium; Oct 28, 2003 - Oct 30, 2003; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...