ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-10-30
    Description: Spectra of Jupiter's icy satellites reveal surfaces dominated by water-ice, minor amounts of SO2 and CO2, and (for Europa) H2O2 along with hydrated materials. Jovian magnetospheric ions (protons, sulfur, and oxygen) and electrons significantly modify the chemical composition of these moons' surfaces in times ranging from a few years for Europa to thousands of years for Callisto at micrometer depths. Appropriate laboratory studies examining relevant volatile and non-volatile materials under low-temperature radiation conditions can provide information on likely radiation chemical mechanisms, on the stability and evolution of species, and on new species awaiting detection. Although the molecules detected on the icy moons are relatively simple, predicting their responses to radiation in space remains difficult. One problem is that there is a dearth of fundamental data examining solid-phase reactions. Our laboratory experiments have focused on infrared studies (2.5 to 25 microns) of a few simple irradiated ices. We have measured the spectra of proton-irradiated H2O ice containing SO2, H2S, and/or CO2. Ices with H2O/SO2 or H2O/H2S ratios of 3 and 30 have been irradiated at 86 K, 110 K, and 132 K. In irradiated H2O + SO2 ices new ions have been identified: SO4(-2), HSO4(-) and H3O(+). After warming to 260 K the residual spectrum is similar to that of H2SO4. Ices with H2O + H2S form SO2. After warming to 175 K, the residual sample matches the spectrum of hydrated H2SO4. H2O + CO2 ice forms carbonic acid, H2CO3 which is stable to temperatures near 230 K. In addition, OCS has been detected in irradiated ices containing H2O + SO2 + CO2. The radiation half-life of SO2 and H2S in H2O has been calculated. Our results give compelling evidence for the presence of new species awaiting detection. Future experiments will examine the signatures of these ices and hydrated materials in the 1 to 5 micron region, where possible weaker overtone bands may occur. In addition, absolute strengths for both the fundamental and overtone bands will be determined. Finally, good arguments can be made, based on current information, for remote sensing observations that have spectral coverage to at least 5 microns on the long wavelength end. This range would include some of the characteristic bands of H2O, H2O2, CO2, SO2, H2CO3, H2S, and OCS.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 56; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...