ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-23
    Description: A three-dimensional Navier Stokes code has been used to compute the heat transfer coefficient on a film-cooled, rotating turbine blade. The blade chosen is the ACE rotor with five rows containing 93 film cooling holes covering the entire span. This is the only film-cooled rotating blade over which experimental data is available for comparison. Over 2.278 million grid points are used to compute the flow over the blade including the tip clearance region. using Wilcox's k-omega model, Coakley's q-omega model, and the zero-equation Baldwin-Lomax (B-L) model. A reasonably good comparison with the experimental data is obtained on the suction surface for all the turbulence models. At the leading edge, the B-L model yields a better comparison than tile two-equation models. On the pressure surface however the comparison between the experimental data and the prediction from the k-omega model is much better than from the other two models. Overall, the k-omega model provides the best comparison with the experimental data. However, the two-equation models require at least 40% more computational resources than the B-L model.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: International Journal of Heat and Mass Transfer (ISSN 0017-9310); Volume 42; 789-802
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...