ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-10
    Description: The interaction of shock waves with vortices has received much attention in the past, mainly because shock-vortex interaction closely models the interaction of a shock wave with the coherent structures of a turbulent flow-field, and is a key feature in the broad-band shock noise for supersonic jets in off-project conditions. Chu and Kovasznay have shown that a weak disturbance in a viscous heat conducting fluid can be decomposed as the sum of three basic modes, namely acoustic, vortical and entropy mode; the interaction of any of these modes with a shock wave gives rise to all three disturbance modes downstream of the shock. The vortical mode is important since it constitutes the basis of the coherent structures that have been observed to dominate turbulence for low- to moderate-flow speed. Hollingsworth et al. have experimentally investigated the interaction of a cylindrical shock-induced starting vortex with a plane normal shock, and have shown that the interaction generates a cylindrical acoustic pulse that exhibits a quadrupolar structure consisting of four alternate compression and expansion regions centered around the transmitted vortex. The investigations of Hollingsworth and Richards have been extended by Dosanjh and Weeks that have analyzed the interaction of a columnar spiral vortex with a normal shock wave, thus obtaining quantitative measurements and confirming the generation of a progressive cylindrical wavefront of alternate compression-expansion nature. Naumann and Hermanns' have experimentally addressed the non-linear aspects of shock-vortex interaction, and have shown that the interaction causes both a diffraction and a reflection of the shock with a pattern consisting of either a regular-or a Mach-reflection depending on the shock and the vortex strengths. An attempt to theoretically explain the production of sound from the shock-vortex interaction was carried out by Ribner. Pao and Salas have numerically studied two-dimensional shock-vortex interactions.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...