ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-16
    Description: Solar activity varied widely over the 14 year lifetime of the Pioneer Venus Orbiter, and these variations directly affected the properties of the nightside ionosphere. At solar maximum, when solar EUV was largest, the Venus ionosphere was found to extend to highest altitudes and nightward ion transport was the main source of the nightside ionosphere. At solar minimum, nightward ion transport was reduced, and electron precipitation was thought to be the main source. In this study, we have attempted a separation of spatial variations from temporal variations by examining the altitude profiles of the magnetic field, and electron density and temperature for three different solar EUV flux ranges. In the upper ionosphere and near-planet magnetotail (h greater than 1800 km), the solar EUV effects are significant. The electron density decreases about an order of magnitude from high to low EUV flux, while the electron temperature at least doubles. The magnetic field also increases 2 - 3 nT. In the lower ionosphere (200 - 600 km), lower EUV fluxes are associated with slightly reduced density, and higher temperature. These results are in accord with recent entry phase observations, where the electron density measured above the ionospheric density peak is lower than that observed at solar maximum during the early Pioneer Venus mission.
    Keywords: Lunar and Planetary Exploration
    Type: Paper 93GL02484 , Geophysical Research Letters. Selected Papers on Pioneer Venus Orbiter: Entry Phase; 20; 23; 2727-2730; NASA-TM-112700
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...