ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-12-03
    Description: SLR2000 is an autonomous and eyesafe satellite laser ranging (SLR) station with an expected single shot range precision of about one centimeter and a normal point (time-averaged) precision better than 3 mm. The system wil provide continuous 24 hour tracking coverage for a constellation of over twenty artificial satellites. Replication costs are expected to be roughly an order of magnitude less than current operational systems, and the system will be about 75% less expensive to operate and maintain relative to manned systems. Computer simulations have predicted a daylight tracking capability to GPS and lower satellites with telescope apertures of 40 cm and have demonstrated the ability of our current autotracking algorithm to extract mean signal strengths below .001 photoelectrons per pulse from daytime background noise. The dominant cost driver in present SLR systems is the onsite and central infrastructure manpower required to operate the system, to service and maintain the complex subsystems, and to ensure that the transmitted laser beam is not a hazard to onsite personnel or to overflying aircraft. To keep development, fabrication, and maintenance costs at a minimum, we adopted the following design philosophies: (1) use off the shelf commercial components wherever possible; this allows rapid component replacement and "outsourcing" of engineering support; (2) use smaller telescopes (less than 50 cm) since this constrains the cost, size, and weight of the telescope and tracking mount; and (3) for low maintenance and failsafe reliability, choose simple versus complex technical approaches and, where possible, use passive techniques and components rather than active ones. Adherence to these philosophies has led to the SLR2000 design described here.
    Keywords: Instrumentation and Photography
    Type: Nineteenth International Laser Radar Conference; 233-236; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...