ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: As a rotor blade moves through the air, it sheds vortices. These vortices shed along the length of the blade over time form the wake. The strongest vortices of the wake are those trailing from the tip of the blade. When a rotating blade system moves under certain operating conditions, each blade will impinge on the tip vortices shed by itself or other blades. This impingement is called a blade-vortex interaction, or BVI. Although the blade and trailing tip vortices interact with many different orientations, one of the two extremes, either parallel or perpendicular interaction, is usually modelled. In a perpendicular interaction, the portion of the blade that is actually interacting with the travelling vortex at any given time is very small. A parallel interaction, however, has the largest concurrent interaction with the blade, as a result this case is given the most attention. One of the most commonly studied occurrences of blade-vortex interactions is associated with low-speed descending rotorcraft flight. BVI occur when the tip vortices shed by the blades intersect the plane of the rotor. BVI cause local pressure changes over the blades which are responsible, in part, for the acoustic signature of the rotorcraft. The local pressure changes also cause vibrations which lead to fatigue of both the blades and the mechanical components driving the blades.
    Keywords: Aerodynamics
    Type: NASA-CR-200880 , NAS 1.26:200880
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...