ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-29
    Description: In this presentation we discuss a new theoretical model and supporting experimental results for the strength and lifetime in creep rupture of unidirectional, carbon fiber/epoxy matrix composites at ambient conditions. First we review the 'standard' Weibull/power-law methodology that has been standard practice. Then we discuss features of a recent model which build on the statistical aspects of fiber strength, micromechanical aspects of stress transfer around fiber breaks, and time-dependent creep of the matrix. The model is applied to 'microcomposites' consisting of seven fibers in a matrix for which strength and creep-rupture data are available. The model yields Weibull distributions in an envelope format for both strength and lifetime. The respective shape, scale and power-law parameters depend on such parameters as the Weibull shape parameter for fiber strength, the exponent for matrix creep, the effective load transfer length (which grows in time due to matrix creep) and the critical cluster size for failed fibers. The experimental results are consistent with the theory, though time-dependent debonding appears to be part of the failure process.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA. Langley Research Center, Workshop on Scaling Effects in Composite Materials and Structures; p 219-242
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...