ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-01-25
    Description: Magnetite-wuestite spherules collected from deep-sea sediments are thought to have originally been Fe-Ni metal particles at the top of the atmosphere that were oxidized and melted during entry into the earth's atmosphere. Some likely sources for the metal particles are Fe-Ni interplanetary dust particles (IDP's) and metal or sulfide from stony IDP's that separated after melting. Davis et al. reported that four of these spherules are enriched in the heavy isotopes of iron, with enrichments of 8-23%/amu. We have developed a technique for analysis of both iron and nickel isotopes on the same ion microprobe spot and have applied this technique to a number of deep-sea spherules in order to better understand the processes leading to isotopic mass fractionation. Eight spherules show iron and nickel isotopic mass fractionation, with iron and nickel enriched in the heavy isotopes by 10-19%/amu and 4-32%/amu, respectively. If the mass fractionations are due to Rayleigh fractionation during evaporation, these spherules lost 76-94% of their original mass. We have analyzed the four magnetite-wuestite spherules for which iron isotopic data were reported by Davis et al. as well as four new spherules.
    Keywords: GEOPHYSICS
    Type: Lunar and Planetary Inst., Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F; p 373-374
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...