ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-01-25
    Description: Cosmochemical analyses of meteorites imply that maximum temperatures in the inner solar nebula were on the order of 1300 K, yet standard viscous accretion disk models predict much lower midplane temperatures (approx. 300 K at 2 AU to 3 AU) in a minimum mass nebula. A second-order accurate radiative hydrodynamics code has been used to construct models of the late-phase solar nebula appropriate for low-mass star formation (M is approximately 10(exp -6) to 10(exp -5) solar-M yr(exp -1). For a minimum mass (0.02 solar-M) nebula and a solar-mass protostar, the new models show that compressional heating due to mass accretion onto the nebula and subsequent vertical contraction of the nebula are sufficient to lead to midplane temperatures T(sub m) greater than 1400 K at 1 AU and T(sub m) greater than 1000 K at 2.5 AU.
    Keywords: SOLAR PHYSICS
    Type: Lunar and Planetary Inst., Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F; p 151-152
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...