ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-10-02
    Description: A detailed comparison of numerical results obtained by solving the Euler equations for the inviscid flow over delta wings in reentry configurations is presented. The investigation involves a side-by-side comparison between independently developed upwind Euler solvers at VKI (M3D) and NASA Johnson Space Center (E3D) using identical grids. In both solvers the governing equations are integrated by means of time marching finite volume shock capturing methods, based on a cell centered upwind evaluation of the cell face fluxes and nonlinear limiters. High resolution schemes are obtained via MUSCL characteristic variable extrapolation to ensure total variation diminishing (TVD) properties and therefore monotonic discontinuity capturing. Further comparisons are made with several published results by other authors based on both upwind and central discretizations. The present results contribute in asserting the high resolution upwind TVD schemes as the most reliable numerical technique to handle the strong discontinuities typical of high speed flows. The performances of the two upwind solvers are satisfactory and the numerical results in good agreement. However, the important issue of reaching a grid converged solution for the present complex three-dimensional inviscid flow problems was not achieved.
    Keywords: AERODYNAMICS
    Type: AGARD, Theoretical and Experimental Methods in Hypersonic Flows; 14 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...