ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2005-11-10
    Description: Large Space Structures do not have much damping, which necessitates the installation of a controller onto the structure. If the controller is improperly designed, the structure may become unstable and be destroyed. Since Large Space Structures are extremely expensive pieces of hardware, new controllers must not be tested first on the structure. They must first be tested in computer simulations. Until now, the usual procedure for simulating controlled Large Space Structures is to compute a reduced order modal representation of the structure and then apply the controller. However, this procedure entails modal truncation error. A new software package which is free from this error is currently under development within the Center for Space Construction. The more accurate finite element representation of the structure is used in the simulation, instead of the less accurate reduced order modal representation. This software also features an efficient matrix storage scheme, which effectively deals with the asymmetric system matrices which occur when control is added to the structure. Also, an integration algorithm was chosen so that the simulation is a reliable indicator of system stability or instability. The software package is fairly general in nature. Linearity of the finite element model and of the controller is the only assumption made. Actuator dynamics, sensor dynamics, noise, and disturbances can be handled by the package. In addition, output feedback of displacement, velocity, and/or acceleration signals can be simulated. Kalman state estimation was also implemented. This software was tested on a finite element model of a real Large Space Structure: The Mini-Mast Truss. Mini-Mast is a testbed at NASA-Langley which is currently under development. A 714 degree of freedom finite element model was computed, and a 19 state controller was designed for it. Torque wheel dynamics were added to the model, and the entire closed loop system was simulated with the software package.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: First Annual Symposium. Volume 1: Plenary Session; 8 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...