ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-19
    Description: The performance of several ice parameterizations has been evaluated through a numerical cloud model. Ice effects using different schemes are contrasted with each other and with an ice-free control by incorporating them into the cloud model and by applying them to simulations of tropical squall systems. The latter are simulated in 2D so that a large domain can be used to incorporate a complete anvil. Nonsquall-type convective lines are simulated in 3D owing to their smaller horizontal scale. It is concluded that inclusion of ice microphysics in the cloud model enhanced the agreement of the simulated convection with some features of observed convection, including the proportion of surface rainfall in the anvil region and the intensity and structure of the radar brightband near the melting level in the anvil. In the experiments with bulk microphysics, three ice categories produced much better results than two ice categories, which in turn was better than no ice. For the tropical squall-type and nonsquall-type systems the optimal mix was ice, snow, and graupel.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Applied Meteorology (ISSN 0894-8763); 30; 985-1004
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...