ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: The accuracy to which a turbulent boundary layer or wake can be predicted numerically depends on the validity of the turbulence closure model used. The modeling of turbulence physics is one of the most difficult problems in computational fluid dynamics (CFD). In fact, it is one of the pacing factors in the development of CFD. In general, there are three main approaches to the description of trubulence physics. First is turbulence modeling in which the Reynolds averaged Navier-Stokes equations are used and some closure approximation is made for the Reynolds stresses. A second approach to turbulence is large eddy simulation (LES) in which the computational mesh is taken to be fine enough that the large scale structure of the turbulence can be calculated directly. An empirical assumption must be made for the small scale sub-grid turbulence. The third approach is direct simulation. In this technique the Navier-Strokes equations are solved directly on a mesh which if fine enough to resolve the smallest length scale of the turbulence. The Reynolds averaged equations are not used and no closure assumption is required. These last two approaches require extensive computer resources and as such are not engineering tools. The purpose of the work was to investigate the various engineering turbulence models for accuracy and ease of programming. This involved comparison of the models with each other and with experimental data.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Hampton Inst., NASA/American Society for Engineering Educ; Hampton Inst., NASA(
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...