ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: The supersonic flow field over a body of revolution incident to the free stream is simulated numerically on a large, array processor (the CDC Cyber 205). The configuration is composed of a cone-cylinder forebody followed by a conical afterbody from which emanates a centered, supersonic propulsive jet. The free-stream Mach number is 2, the jet-exit Mach number is 2.5, and the jet-to-free-stream static pressure ratio is 3. Both the external flow and the exhaust are ideal air at a common total temperature. The thin-layer approximation to the time-dependent, compressible, Reynolds-averaged Navier-Stokes equations are solved using an implicit finite-difference algorithm. The data base, of 5 million words, is structured in a 'pencil' format so that efficient use of the array processor can be realized. The computer code is completely vectorized to take advantage of the data structure. Turbulence closure is achieved using an empirical algebraic eddy-viscosity model. The configuration and flow conditions correspond to published experimental tests and the computed solutions are consistent with the experimental data.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 83-1709
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...