ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: The Deep Space Network is investigating the use of higher operational frequencies for improved performance. Noise temperature and noise figure concepts are used to describe the noise performance of these receiving systems. It is proposed to modify present noise temperature definitions for linear amplifiers so they will be valid over the range (hf/kT) 1 (hf/kT). This is important for systems operating at high frequencies and low noise temperatures, or systems requiring very accurate calibrations. The suggested definitions are such that for an ideal amplifier, T sub e = (hg/k) = T sub q and F = 1. These definitions revert to the present definition for (hf/kT) 1. Noise temperature calibrations are illustrated with a detailed example. These concepts are applied to system signal-to-noise analysis. The fundamental limit to a receiving system sensitivity is determined by the thermal noise of the source and the quantum noise limit of the receiver. The sensitivity of a receiving system consisting of an ideal linear amplifier with a 2.7 K source, degrades significantly at higher frequencies.
    Keywords: COMMUNICATIONS AND RADAR
    Type: The Telecommun. and Data Acquisition Rept.; p 100-111
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...