ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK . : Blackwell Publishing, Inc.
    Risk analysis 25 (2005), S. 0 
    ISSN: 1539-6924
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: In their regulations, the U.S. Environmental Protection Agency and the U.S. Nuclear Regulatory Commission permit the omission of features, events, or processes with probabilities of 〈10−4 in 104 yr (e.g., a constant frequency of 〈10−8 per yr) in assessments of the performance of radioactive waste disposal systems. Igneous intrusion (or “volcanism”) of a geologic repository at Yucca Mountain for radioactive waste is one disruptive event that has a probability with a range of uncertainty that straddles this regulatory criterion and is considered directly in performance assessment calculations. A self-sustained nuclear chain reaction (or “criticality”) is another potentially disruptive event to consider, although it was never found to be important when evaluating the efficacy of radioactive waste disposal since the early 1970s. The thesis of this article is that the consideration of the joint event—volcanism and criticality—occurring in any 10,000-year period following closure can be eliminated from performance calculations at Yucca Mountain. The probability of the joint event must be less than the fairly well-accepted but low probability of volcanism. Furthermore, volcanism does not “remove” or “fail” existing hydrologic or geochemical constraints at Yucca Mountain that tend to prevent concentration of fissile material. Prior to general corrosion failure of waste packages, the mean release of fissile mass caused by a low-probability, igneous intrusive event is so small that the probability of a critical event is remote, even for highly enriched spent nuclear fuel owned by the U.S. Department of Energy. After widespread failure of packages occurs, the probability of the joint event is less than the probability of criticality because of the very small influence of volcanism on the mean fissile mass release. Hence, volcanism plays an insignificant role in inducing criticality over any 104-yr period. We also argue that the Oklo reactors serve as a natural analogue and provide a rough bound on probability of criticality given favorable hydrologic or geochemical conditions on the scale of the repository that is less than 0.10. Because the product of this bound with the probability of volcanism represents the probability of the joint event and the product is less than 10−4 in 104 yr, consideration of the joint event can be eliminated from performance calculations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...