ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1475-2743
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. Vineyards in Champagne, France are generally situated on slopes where the soils are subject to erosion. Therefore it is important to find a soil-surface management practice that protects the soil against water erosion. We assessed the potential of mulches or grass covers to stabilize soil aggregates in a calcareous sandy loam from a vineyard in Champagne after 9 years under different management systems. Four different treatments were studied: (i) a bluegrass (Poa pratensis) surface cover between the vine rows (GC) with bare soil under the vines (R); two organic mulches of (ii) coniferous (CB) or (iii) poplar (PB) bark that covered the entire soil surface, and (iv) bare soil between the rows as a control. The bark amendments were applied every 3 years at rates of 61 and 67 t ha−1 for the PB and CB treatments, respectively. The kinetics of soil disaggregation in water fitted a power law (A=K t−D), in which K was the fraction of water-stable 〉200 μm aggregates remaining after 1 hour of wet-sieving. In the 0–5 cm layer, aggregate stability was greater for GC (K=21.7), CB (K=15.2) and PB (K=13.6) than for the control (K=10.5) and R (K=11.8). In the 0–20 cm layer, CB also stabilized soil aggregates (K=14.0–15.0); but PB did not. Structural stability was more strongly related to total organic carbon (R2=0.64, P 〈0.001) than to microbial biomass carbon (R2=0.54, P〈0.001). A bluegrass cover enhanced structural stability in the 0–5 cm and 0–20 cm layers (K=14.2), probably because of intense root development and rhizodeposition enhancing microbially produced metabolites, such as carbohydrates. Establishing grass cover or applying bark mulch are effective agricultural practices that improve soil aggregate stability and thus should reduce soil erosion. The vegetative growth of the vines was greater on the soils amended with bark mulches and less on the grass covered soils compared with the control soil; however, no difference in wine quality was observed among the different treatments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...