ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Antimicrobial peptides are distributed throughout the animal kingdom and are a key component of innate immunity. Salmonella typhimurium regulates mechanisms of resistance to cationic antimicrobial peptides through the two-component systems PhoP–PhoQ and PmrA–PmrB. Polymyxin resistance is encoded by the PmrA–PmrB regulon, whose products modify the lipopolysaccharide (LPS) core and lipid A regions with ethanolamine and add aminoarabinose to the 4′ phosphate of lipid A. Two PmrA–PmrB-regulated S. typhimurium loci (pmrE and pmrF ) have been identified that are necessary for resistance to polymyxin and for the addition of aminoarabinose to lipid A. One locus, pmrE, contains a single gene previously identified as pagA (or ugd ) that is predicted to encode a UDP-glucose dehydrogenase. The second locus, pmrF, is the second gene of a putative operon predicted to encode seven proteins, some with similarity to glycosyltransferases and other complex carbohydrate biosynthetic enzymes. Genes immediately flanking this putative operon are also regulated by PmrA–PmrB and/or have been associated with S. typhimurium polymyxin resistance. This work represents the first identification of non-regulatory genes necessary for modification of lipid A and subsequent antimicrobial peptide resistance, and provides support for the hypothesis that lipid A aminoarabinose modification promotes resistance to cationic antimicrobial peptides.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...