ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The Escherichia coliβ sliding clamp is proposed to play an important role in regulating DNA polymerase traffic at the replication fork. As part of an ongoing effort to understand how organisms manage the actions of their multiple DNA polymerases, we examined the ability of several mutant forms of the β clamp to function in DNA polymerase V- (pol V-) dependent translesion DNA synthesis (TLS) in vivo. Our results indicate that a dnaN159 strain, which expresses a temperature sensitive form of the β clamp, was impaired for pol V-dependent TLS at the permissive temperature of 37°C. This defect was complemented by a plasmid that expressed near-physiological levels of the wild-type clamp. Using a dnaN159 mutant strain, together with various plasmids expressing mutant forms of the clamp, we determined that residues H148 through R152, which comprise a portion of a solvent exposed loop, as well as position P363, which is located in the C-terminal tail of the β clamp, are critically important for pol V-dependent TLS in vivo. In contrast, these same residues appear to be less critical for pol III-dependent replication. Taken together, these findings indicate that: (i) the β clamp plays an essential role in pol V-dependent TLS in vivo and (ii) pol III and pol V interact with non-identical surfaces of the β clamp.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...