ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Fatigue & fracture of engineering materials & structures 24 (2001), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Push–pull fatigue tests were conducted under a sinusoidal stress waveform with a frequency of 1 Hz and a trapezoidal one with a hold time in both tension and compression at 300 MPa-amplitude. Tests were conducted at a temperature of 1273 K using smooth bar specimens of the nickel-base single-crystal superalloy CMSX-10. Small cracks were observed on the surface of the interrupted specimens by means of optical and scanning electron microscopes and their number and length were measured. The fatigue behaviour was characterized as follows: (1) A number of small cracks were initiated at a relatively early stage on the grain boundaries of the surface oxide which were perpendicularly to the tensile stress axis direction. (2) Some of these cracks grew inside and reached the base metal. Their growth brought about final fracture of the specimen. (3) The creep strain during the stress hold period accelerated the growth rate of the small cracks and shortened the fatigue life.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...