ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Pty
    The @island arc 7 (1998), S. 0 
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: New inductively coupled plasma mass spectrometry (ICP-MS) trace element data are presented on a suite of arc lavas from the northern Mariana and southern Bonin island arcs. The samples were dredged from seamounts in the Central Island Province (CIP), the Northern Seamount Province (NSP) and the Volcano Arc (VA), and they range in composition from low-K tholeiites to shoshonites. Previous studies on these samples concluded that the primary compositional control was two-component mixing between a fluid-metasomatized mid-ocean ridge basalt (MORB) source and an enriched, ocean island basalt (OIB)-like, mantle component, with subducted sediment material playing a secondary role. However, the new trace element data suggest that the compositional variations along the Mariana arc can be better explained by the addition of spatially varying subduction components to a spatially varying mantle source. The data suggest that the subduction component in the CIP and VA is dominated by aqueous fluids derived from altered oceanic crust and a pelagic sediment component, while the subduction component in the NSP is dominated by more silicic fluids derived from volcanogenic sediments as well as from pelagic sediment and altered oceanic crust. The mantle wedge in the CIP and VA is depleted relative to a normal mid-ocean ridge basalt source by loss of a small melt fraction, while the mantle wedge in the NSP is enriched either by possible gain of a small melt fraction or addition of a sediment-derived melt. Because the subduction of seamounts controls the arc and back-arc geometries, so the concomitant variation between subducted material and mantle composition may be no coincidence. The high field strength element (HFSE) data indicate a high degree of melting (∼ 25–30%) throughout the arc, ∼ 10% of which may be attributed to decompression and ∼ 20% to fluid addition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...