ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 53 (2002), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: To clarify the role of air molecules in coupled heat and mass transfer in soil, we measured the thermal conductivity of three kinds of soil (Ando soil, Red Yellow soil, and Toyoura sand) under reduced air pressure over a wide range of water content and temperature (10–75°C). The thermal conductivity increased sharply under reduced air pressure above a critical water content of the soil, becoming several times larger than that under normal pressure (101 kPa). The maximum thermal conductivity for each soil was obtained below 75°C and was similar to the thermal conductivity of some metals such as Mn, Hg and stainless steel. When the soil was drier than its critical water content, the thermal conductivity did not increase under reduced air pressure. The hydraulic diffusivity at the critical water content for each soil was of the order of 10−8 m2 s−1. This suggests that the latent heat transfer is enhanced by the circulation of the condensed water. However, very little is known about the effect of circulating water on the latent heat transfer under reduced air pressure. To make this clear, the thermal conductivity would need to be measured in the steady state under reduced air pressure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...