ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 9 (1991), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Textural ‘unconformities’or truncations are common in porphyroblasts with complex inclusion trails. They reflect cycles of successive foliations that develop against competent porphyroblasts during orogenesis and are preserved by successive growth increments. Their truncational character results from shear and dissolution along a particular foliation generating a differentiated crenulation cleavage. The increment of porphyroblast growth that follows a textural ‘unconformity’may or may not mark a significant compositional change, depending on the amount of movement of the rock through P–T space between cleavage-forming events.Although historically interpreted to result from a significant metamorphic hiatus, most textural unconformities indicate that the reactions involved in the formation of these minerals are episodic during continuous prograde metamorphism, starting and stopping as a function of the stage of crenulation of the matrix foliation and the pattern of deformation partitioning. Such episodic reaction behaviour can only occur for multivariant reactions, or successive but different univariant reactions. The reason why garnet is the most common porphyroblast to exhibit evidence for episodic reactions is probably the fact that it grows by multivariant reactions over a much wider P–T range than most other common porphyroblast phases.Porphyroblast growth is micrometasomatic. It is episodic because a significant reduction of strain occurs within domains of progressive shortening each time continuous progressive shearing domains form on their margins. This stops microfracture development across the progressive shortening domains, thereby preventing rapid access and interaction of fluid, ions and complexes with porphyroblast boundaries. Shifting patterns of deformation partitioning and resulting small-scale juxtaposition of different compositional layers spreads the duration and location of multivariant reactions and causes differential timing of porphyroblast growth along a particular stratigraphic horizon. It may also locally preserve metastable metamorphic assemblages.In regionally metamorphosing/deforming pelites, near-simultaneous cessation of porphyroblast growth on all rims, once continuous differentiated progressive shearing domains have formed nearby, precludes fluid recirculation as a significant process for removal of material during cleavage development. Alternatively, diffusion of simple molecules and dissociated ions along actively shearing and micro-gaped phyllosilicates, with recomplexing in fluid-filled microfractures, readily explains the control of deformation partitioning on reaction site and reaction duration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...