ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Ground water 22 (1984), S. 0 
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: Deep-well injection into fractured sandstone is an option for the disposal of contaminated mine dewatering discharge from an open pit uranium mine. As part of the assessment of potential contaminant migration from deep-well injection, the effect of matrix diffusion was evaluated. An analytical mathematical model was developed for the simulation of the radial movement of a contaminant front away from an injection point under steady flow conditions in a planar fracture with uniform properties. The model includes the effects of advection in the fracture, diffusion of contaminants from the fracture into the rock matrix, and equilibrium adsorption on the fracture surface as well as in the rock matrix. Effective diffusion coefficients obtained from laboratory experiments on 11 intact core samples varied from 3.4 × 10−8 to 3.2 × 10−7 cm2/s. Model simulations were made with diffusion coefficient values in this range and with single-fracture injection rates estimated from fracture frequencies in boreholes, and from bulk hydraulic conductivity values obtained from field tests. Because of matrix diffusion, the rate of outward movement of the front of the nonreactive contaminants from the injection well is much slower than the rate of water flow in the fractures. Simulations of the movement of contaminants that undergo adsorption indicate that even a small distribution coefficient for the rock matrix causes the contaminants to remain very close to the injection well during the one-year period. The results of the simplified model demonstrate that matrix diffusion is an important process that cannot be neglected in the assessment of a waste disposal scheme located in fractured porous rock. However, in order to make a definitive assessment of the capability of matrix diffusion and associated matrix adsorption to significantly limit the extent of contaminant migration around injection wells, it would be necessary to conduct field tests such as a preliminary or experimental injection.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...