ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Ground water 34 (1996), S. 0 
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: In situ bioremediation of contaminated aquifers is often limited by the concentration of dissolved oxygen in the ground water. Various methods have been used to increase dissolved oxygen concentrations in ground water, but the effect of a trapped gas phase on the distribution and transport of dissolved oxygen needs to be understood. The two-dimensional transport of dissolved oxygen is investigated in experiments conducted in a large-scale physical aquifer model (2 m × 4 m × 0.2 m) where a gas phase is trapped in the pore spaces of an otherwise-saturated porous medium. The transport of dissolved oxygen is shown to be retarded up to 11.2 times the transport of the bulk water due to the mass transfer of oxygen between the aqueous phase and the trapped gas phase. The theoretical model for dissolved gas transport in the presence of a trapped gas phase is evaluated in a two-dimensional ground-water flow field using the U.S.G.S. numerical model MOC. The results show that dissolved oxygen transport can be modeled with the advection-dispersion equation with linear equilibrium mass transfer but only when the longitudinal dispersion is increased compared to the value determined using a bromide tracer of the water flow. Increased longitudinal dispersion of the dissolved oxygen plume may be due to a temporally or spatially varying retardation factor or rate-limited mass transfer. The presence of even a small amount of a trapped gas phase in an aquifer will significantly affect the distribution and transport of dissolved oxygen (trapped gas filling only 5% of the pore space will cause a retardation factor for oxygen of 2.6 at T = 15°C) and thus should be considered when designing ways to increase the dissolved oxygen concentration in ground water for in situ bioremediation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...