ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Ground water monitoring & remediation 16 (1996), S. 0 
    ISSN: 1745-6592
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: Micellar-enhanced ultrafiltration (MELT) and air stripping were evaluated for surfactant-contaminant separation and surfactant recovery. Two linear alkyl diphenyloxide disulfonate (DPDS) surfactants were evaluated with the contaminants naphthalene and trichloroethylene. A separation model developed from micellar partitioning principles showed a good correlation to batch MEUF studies, whereas flux analysis highlighted concentration polarization effects in relation to hydrophobe length. MEUF effectively concentrated the surfactant-contaminant system (93 to 99 percent retention); however, this did not result in surfactant-contaminant separation. Batch and continuous flow air stripping models were developed based upon air/water ratio, surfactant concentration, and Micellar partitioning; model predictions were validated by experimental data. Sensitivity analyses illustrated the decline in contaminant-surfactant separation with increasing surfactant concentration (e.g., TCE removal efficiency declines from 83 percent to 37 percent as C-16 DPDS concentration increases from 0 to 55 mM). This effect is greater for more hydrophobic contaminants (naphthalene vs. TCE) and surfactants with greater solubilization potential (C16-DPDS vs. C-12 DPDS). The resulting design equations can account for this effect and thus properly size air strippers to achieve the desired removal efficiency in the presence of surfactant micelles. Proper selection and design of surfactant-contaminant separation and surfactant recovery systems are integral to optimizing surfactant-enhanced subsurface remediation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...