ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 295-296 (Oct. 2005), p. 83-88 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Mechanical properties of DNA, for example the elastic modulus, are of vital importance for its biological function. Previously, the modulus is mainly obtained by bending, stretching and twisting DNA using various techniques and tools. By applying vibrating mode scanning polarization force microscopy (VPSFM), deformations of DNA under ultra-small indentation forces can be measured and so the radial modulus can be computed. In this paper, modeling of the VPSFM measuring system is presented. The system is modeled as a spring-mass-damper oscillator under various force fields, such as van der Waals force, attractive electrical force and repulsive interactions between the tip and sample. The electrical polarization force is described by using uniformly charged line model and the DNA is considered to be a simple elastic rod. By numerically integrating the equation of tip motion, the contact force and the radial modulus of DNA under different deformation can be calculated. We found that in measuring radial modulus of DNA, the existence of substrate cannot be neglected, especially when the relative large deformation is reached
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...