ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 2 (1995), S. 4161-4168 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effect of different nonlinearities (Ampère force and Hall effect) on the saturation of a magnetic field generated by flows of conducting fluid is studied by means of numerical simulations. A three-fluid (i.e., ions, electrons, and neutral particles) model is considered. The velocity field of the neutral particles is a prescribed, deterministic, incompressible three-dimensional field in the form of the Arnol'd–Beltrami–Childress (ABC) flow. The dynamics of the charged components of fluid is determined by two-fluid magnetohydrodynamics when ion–neutral particle collisions are taken into account. Four typical regimes of the nonlinear evolution of the magnetic field, corresponding to different types of nonlinearities (Ampère force or Hall effect) and different types of collisions (ion–ion collisions or ion–neutral particle collisions) are found. The transitions between these regimes, the structure of the saturated magnetic field, and the evolution of the magnetic field in these regimes are studied. Scaling estimates of the level of the saturated magnetic field and conditions obtained for the different regimes of the magnetic field evolution are in agreement with the results of the numerical simulations. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...