ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 3 (1991), S. 2497-2515 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: There have been observations that an intense sound field can break up a liquid drop in levitation by flattening it drastically through radiation pressure. Using high-speed photography, it is observed that, for a low-viscosity liquid, at a high sound intensity, ripples appear on the central membrane of the drop. At a higher intensity, the membrane may atomize by emitting satellite drops from its unstable ripples. For a general viscosity, it might also buckle upward like an umbrella and shatter, or might simply expand horizontally like a sheet and shatter. Using a disklike model for the flattened drop, the phenomenon was studied and good qualitative agreement with the observations was found. It is believed that at low viscosity, the ripples are capillary waves generated by the parametric instability excited by the membrane vibration, which is driven by the sound pressure. Atomization occurs whenever the membrane becomes so thin that the vibration is sufficiently intense. For any viscosity, the vibration leads to a Bernoulli correction in the static pressure, which is destabilizing. Buckling occurs when an existent equilibrium is unstable to a radial oscillation of the membrane because of the Bernoulli effect. Besides, the radiation stress at the rim of the flattened drop, being a suction stress, is also destabilizing, leading to the horizontal expansion and the subsequent breakup.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...