ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 101 (1994), S. 7729-7737 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The excitation energies and ionization potentials of the atoms in the first transition series are notoriously difficult to compute accurately. Errors in calculated excitation energies can range from 1 to 4 eV at the Hartree–Fock level, and errors as high as 1.5 eV are encountered for ionization energies. In the current work we present and discuss the results of a systematic study of the first transition series using a spin-restricted Kohn–Sham density-functional method with the gradient-corrected functionals of Becke and Lee, Yang and Parr. Ionization energies are observed to be in good agreement with experiment, with a mean absolute error of approximately 0.15 eV; these results are comparable to the most accurate calculations to date, the quadratic configuration interaction single, double (triple) [QCISD(T)] calculations of Raghavachari and Trucks. Excitation energies are calculated with a mean error of approximately 0.5 eV, compared with ∼1 eV for the local density approximation and 0.1 eV for QCISD(T). These gradient-corrected functionals appear to offer an attractive compromise between accuracy and computational effort.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...