ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 111 (1999), S. 3862-3873 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A new potential energy surface for the lowest 3A″ electronic state of the O(3P)+HCl system is presented. This surface is based on electronic energies calculated at the multireference configuration interaction level of theory with the Davidson correction (MR-CI+Q) using the Dunning cc-pVTZ one-electron basis sets. The ab initio energies thus obtained are scaled using the scaled external correlation (SEC) method of Brown and Truhlar. The SEC-scaled energies are fitted to a simple analytical expression to yield a potential energy surface which correlates the reactants O(3P)+HCl(1Σ+) to the products OH(2Π)+Cl(2P). The reaction barrier on this surface lies at an O–H–Cl angle of 131.4° at an energy of 9.78 kcal/mol above the asymptotic O+HCl minimum. This barrier is 1.3 kcal/mol higher than that on the potential energy surface obtained by Koizumi, Schatz, and Gordon (KSG) [J. Chem. Phys. 95, 6421 (1991)] and 1.1 kcal/mol lower than the S2 surface of Ramachandran, Senekowitsch, and Wyatt (RSW) [J. Mol. Struct. (Theochem) 454, 307 (1998)]. The dynamics of the reaction O(3P)+HCl(v=2; j=1,6,9)→OH(v′,j′)+Cl on this potential surface is studied using quasi-classical trajectory (QCT) propagation and the results are compared to the experimental observations of Zhang et al. [R. Zhang, W. J. van der Zande, M. J. Bronikowski, and R. N. Zare, J. Chem. Phys. 94, 2704 (1991)]. The broad distribution of collision energies in the experiment is modeled by computing weighted averages of the quantities of interest with the weighting factor at each collision energy determined by the collision energy distribution. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...