ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 85 (1986), S. 5512-5518 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The microwave spectrum of Ar–NH3 has been obtained using molecular beam electric resonance spectroscopy and pulsed nozzle Fourier transform microwave spectroscopy. The spectrum is complicated by nonrigidity and most of the transitions are not yet assigned. A ΔJ=1, K=0 progression is assigned, however, and from it the following spectroscopic constants are obtained for Ar–14NH3: (B+C)/2=2876.849(2) MHz, DJ =0.0887(2) MHz, eqQaa =0.350(8) MHz, and μa =0.2803(3) D. For Ar–15NH3 we obtain (B+C)/2 =2768.701(1) MHz and DJ =0.0822(1) MHz. The distance between the Ar atom and the 14NH3 center of mass RCM is calculated in the free internal rotor limit and obtained as 3.8358 A(ring). In the pseudodiatomic approximation, the weak bond stretching force constant is 0.0084 mdyn/A(ring) which corresponds to a weak bond stretching frequency of 35 cm−1. The NH3 orientation in the complex is discussed primarily on the basis of the measured dipole moment projection and the quadrupole coupling constant. It is concluded that the Ar–NH3 intermolecular potential is nearly isotropic and that the NH3 subunit undergoes practically free internal rotation in each of its angular degrees of freedom. Spectroscopic evidence is presented which indicates that the NH3 subunit also inverts within the complex. These conclusions concerning the internal dynamics in the Ar–NH3 complex support the model initially proposed in our previous study of the microwave and infrared spectra of this species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...