ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 88 (1988), S. 4127-4138 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Efficient excited-state proton transfer in neutral acid–base clusters α-naphthol⋅Bn has been detected and studied by a combination of laser spectroscopic techniques (resonant two-photon ionization, fluorescence excitation, and emission spectroscopy). S1 state proton transfer was observed for B=NH3 and n≥4, as evidenced by several criteria: (a) large red shift and substantial broadening of the R2PI spectra of the n≥4 clusters relative to those of the bare α-naphthol and smaller clusters; (b) very large Stokes shift (∼8000 cm−1) of the emission spectra of the n≥4 clusters; (c) complete broadening of the fluorescence emission band for the n≥4 clusters; and (d) a striking similarity of the emission band position and width of the latter spectra to the emission spectrum of the α-naphtholate anion in basic aqueous solution. No proton-transfer reaction was observed for small solvent clusters with B=NH3 and n≤3, nor for any of the pair complexes studied, which involve a single base partner [B=triethylamine, 3-dimethylamino-1-aminopropane, 1,4-bis(dimethylamino)butane] which we have studied so far. This behavior illustrates the difficulty of achieving charge separation in neutral gas-phase complexes or clusters. A critical gas-phase proton affinity PAcrit =248±3 kcal/mol was determined for proton transfer to take place in the α-naphthol⋅Bn (or base B) system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...