ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 92 (1990), S. 220-226 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We predict a new quantum isotope effect for unimolecular dissociations of molecules with two equivalent but isotopically substituted bonds l (light isotope) and h (heavy isotope), e.g., HOT where l=HO and h=OT. Consider two near-degenerate local vibrational excitations of bonds l or h, with energies between the gap of product zero point energies. Dynamically, these excitations should induce preferential fissions of bonds l or h, but energetically, these decay channels are open and closed, respectively. Therefore, local excitation of bond h must be followed by extremely slow internal vibrational energy redistribution to bond l before dissociation, whereas local excitation of bond l induces direct, rapid decay. The resulting decay rates differ by many orders of magnitudes. The effect is demonstrated by fast Fourier transform propagation of representative wavepackets for a model system, HOT→H+OT. Extended applications to more excited educts HOT also confirm an effect discovered previously for HOD, i.e., local mode selective control of competing bond fissions H+OT←HOT→HO+T.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...