ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 75 (1994), S. 7429-7432 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Measurements of x-ray diffraction, magnetization, magnetostriction, and Mössbauer effect were performed on a series of Sm1−xDyxFe2 samples (x=0, 0.1, 0.15, 0.25, 0.45, and 0.65). It is shown that the system retains the cubic MgCu2 structure over the whole range and the lattice constant decreases linearly with increasing x. Results of Mössbauer effect study at room temperature show that for a small amount of Dy substitution for Sm, x〈0.15, easy axes of the magnetization keep in the [111] direction. For x(approximately-greater-than)0.15, the direction of easy axes rotates gradually from [111] for x=0, and 0.1 to [100] for x=0.45 and 0.65. The concentration dependence of the saturation magnetization exhibits a minimum at x=0.30 for 1.5 K and at x=0.45 for room temperature, reflecting the occurrence of the compensation of magnetic moments at various Sm/Dy ratios. For x=0.45 and 0.65, the pinning phenomenon of narrow domain walls was observed at low temperature. The magnetostriction was found to decrease with the increase in the Dy content, as a result of the compensation of λ111 in Sm1−xDyxFe2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...