ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: New experimental results are presented which provide evidence for hydrogen passivation and depassivation of plasma-charging-induced defects in gate oxides and at oxide/silicon interfaces. The devices used in this study were 0.5 μm n-channel metal–oxide–semiconductor field-effect transistors fabricated on 200 mm boron-doped silicon substrates. The processing included Cl2/HBr-based chemistries for the polycrystalline silicon gate definition etch, and CHF3/CF4-based chemistries for the contact etch. Plasma-charging defects resulting from the processing are shown to have the following properties: (i) plasma-induced charging defects are latent (electrically inactive) directly after our processing and before postmetallization annealing (PMA); (ii) these defects continue to be latent after N2 and Ar anneals done at temperatures T in the range 200 °C≤T≤400 °C; (iii) these defects are also latent after our standard PMA done in forming gas at 400 °C; (iv) these defects are electrically activated by room-temperature Fowler–Nordheim stress, and (v) equivalently these defects are electrically activated by annealing below 400 °C in hydrogen-rich ambients. We show hydrogen passivation/depassivation is responsible for this behavior. This passivation/depassivation has been previously suggested to occur for defects at SiO2/Si interface; here it is also proposed to describe defect–hydrogen interactions in the bulk gate oxide for defects caused by plasma-charging damage. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...