ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 85 (1999), S. 5807-5809 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The interface structures of magnetic tunnel junctions were studied using x-ray photoelectron spectroscopy (XPS). The structures were correlated with magnetoresistance (MR) characteristics. For MR measurements, Fe(50 nm)/AlOx/CoFe(30 nm) junctions with an in situ naturally oxidized Al tunnel barrier were fabricated. The thickness of the Al layer, an important parameter in MR characteristics, was varied from 0 to 5 nm. MR curves showed that the largest MR ratio occurred when the Al layers were 2–3 nm in thickness. XPS analysis showed that an Al layer greater than 1 nm thick covers the entire surface of the Fe underlayer. However, if the Al layer is more than 1 nm thick, the unoxidized Al remaining after the oxidation process increases as the thickness is increased. For Al layers that are greater than 3 nm thick, the MR ratio is strongly affected by unoxidized Al, probably due to the decrease in spin polarization at the surface of an Fe/Al electrode. On the other hand, the hysteresis loops indicate that the difference in coercive force between Fe and CoFe layers reduces with decreasing Al thickness for Al layers less than 2.5 nm thick. This means that the antiparallel direction of magnetization in the two layers becomes incomplete due to the gradual increase of the ferromagnetic coupling between them. As a result, the MR ratio decreases, although a 1-nm-thick Al layer seems to be enough to cover the Fe surface. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...