ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 2959-2966 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: This article describes the use of optical methods based on picosecond transient gratings to stimulate and detect ultrasonic acoustic modes in several important structures with dimensions less than ∼200 μm: single-mode optical fiber, cylindrical microcapillary tubes, and planar microfluidic networks. The measurements illuminate the characteristics and dispersion of acoustic modes—Rayleigh and Lamb-like modes and Scholte–Stoneley waves—in three-dimensional microsystems with feature sizes that are comparable to the modal wavelengths. The results demonstrate, for example, the ability to measure, rapidly and nondestructively, the mechanical characteristics of on-fiber metal and polymer coatings. They also illustrate real-time monitoring of the elastic and loss moduli, and thermal diffusivities of nanoliter volumes of material contained in planar microfluidic channels during the course of photochemical curing reactions. The techniques are potentially useful for applications ranging from characterization of high-frequency acoustic modes in optical fiber that may be relevant to new types of in-fiber acousto-optic filters and modulators, to detection in microfluidic total analysis systems. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...