ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 88 (2000), S. 5821-5826 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Highly resistive molecular beam epitaxial GaN layers are characterized by temperature dependent conductivity and Hall effect measurements. Seven n-type GaN samples with room temperature layer resistivity ranging between 8 and 4.2×106 Ω cm are used in this study. The experimental data are analyzed by considering various transport models such as band and hopping conduction, scattering on charged dislocations and grain boundaries controlled transport. The same defect level of 0.23 eV, attributed to nitrogen vacancy, is found for layers with ρ300≤3.7×103 Ω cm. The Hall mobility for two lower resistivity layers is influenced mainly by phonon scattering (μH∼Tx, x=−1.4). However, higher resistivity layers show positive mobility power, x=0.5–0.9, which can be explained by dominating scattering on charged dislocations. Properties of layers with the highest resistivity (1×105 and 4.2×106 Ω cm) and extremely low Hall mobility (6 and 〈0.1 cm2 V−1 s−1) are consistent with grain boundary controlled transport. The barrier height between grains of 0.11 eV and an average grain size of 200 nm are found. Neither nearest-neighbor or variable range single phonon hopping nor multiphonon hopping can be clearly attributed to the conduction of the layers investigated. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...