ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 187 (1995), S. 144-154 
    ISSN: 1615-6102
    Keywords: Pollen ; Genetic ablation ; Diphtheria toxin ; Nicotiana tabacum ; Cell migration ; Pollen-specific gene expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The technique of genetic cell ablation involves the targeted expression of a cell autonomous cytotoxic protein under the control of cell-specific regulatory sequences. This technique allows the investigation of cell-cell interactions by inducing selective death in a precisely controlled and cell autonomous manner. Here, targeted vegetative cell-specific ablation was used to examine the role of the vegetative cell (VC) in controlling generative cell (GC) behaviour and differentiation during pollen development. The tomatolat 52 late-pollen promoter, which has been shown to be activated specifically in the nascent VC immediately following pollen mitosis I (PMI), was used to direct expression of the cytotoxic diphtheria toxin A chain (DTA) in both transient expression assays using microprojectile bombardment and in transgenic tobacco plants. Transient expression of DTA linked to thelat 52 promoter (lot 52-DTA) in pollen dramatically reduced the expression of a co-transfected reporter gene fusion, demonstrating the cytotoxicity of DTA to pollen. Genetic and phenotypic analysis oflat 52-DTA transformants demonstrated that DTA expression led to a pollen-lethal phenotype, recognisable as small acytoplasmic pollen grains at anthesis, which affected 50% of the pollen population in single locus transformants. Detailed cytological analysis using confocal laser scanning microscopy and vital staining using fluorescein diacetate (FDA), showed that the first sign of cell ablation during pollen development was a loss of vital staining of the VC immediately following PMI. In contrast, the GC retained viability for up to several days following VC ablation, but progressively lost viability in the absence of a functional VC. Of particular interest was the observation that in the absence of VC function the generative cell (GC) failed to undergo normal migration away from the pollen grain wall into the VC cytoplasm. These results directly demonstrate the dependence of the GC on VC cell functions and highlight the importance of VC-GC interactions in controlling GC migration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...