ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Meteorology and atmospheric physics 57 (1995), S. 43-60 
    ISSN: 1436-5065
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography , Physics
    Notes: Summary We have used a multi-phase cloud photochemistry model to investigate the influence of dissolved iron (Fe) and copper (Cu) on the in-cloud production and loss of ozone and ozone-related species. Comparison of the results of our simulations with and without Fe and Cu reactions for three different photochemical scenarios (marine, averaged continental and polluted continental) indicate that Fe and Cu reactions, depending upon the scenario considered, can either increase or decrease the predicted rate of loss of ozone and ozone related species. For the marine and averaged continental scenarios the rate of loss of ozone in the aqueous-phase was decreased by as much as 45% and 70%, respectively, when Fe and Cu reactions were considered. For polluted continental conditions, the rate of loss of ozone in the aqueous phase increased with a factor 2 for low metal concentrations up to a factor 20 for high metal concentrations. In all three scenarios inclusion of the Fe and Cu reactions results in cloud droplets becoming more efficient sinks for gas-phase HO2 and also enhances OH production. The net effect of the decreased losses of ozone from the aqueous phase and the effect of the cloud droplets on HO2 and OH determine the overall impact on ozone and ozone related species, for each of the situations considered. Overall, when Fe and Cu reactions were included the marine cloud was found to be a less efficient sink for ozone, and averaged continental and polluted continental clouds were more efficient sinks for ozone (O3 losses doubled in the averaged continental scenario). The higher OH flux in the aqueous phase also enhances the rate at which organic compounds, such as formaldehyde and formic acid, are oxidized in the cloud.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...