ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of mathematical biology 26 (1964), S. 147-166 
    ISSN: 1522-9602
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Mathematics
    Notes: Abstract This paper describes a mathematical model developed to simulate the physical characteristics of the human thermal system in the transient state. Physiological parameters, such as local metabolic heat generation rates, local blood flow rates, and rates of sweating, must be specified as input data. Automatic computation of these parameters will be built into the model at a later date when it is used to study thermal regulation in the human. Finite-difference techniques have been used to solve the heat conduction equation on a Control Data Corporation 1604 computer. Since numerical techniques were used, it was possible to include many more factors in this model than in previous ones. The body was divided into 15 geometric regions, which were the head, the thorax, the abdomen, and the proximal, medial, and distal segments of the arms and legs. Axial gradients in a given segment were neglected. In each segment, the large arteries and veins were approximated by an arterial pool and a venous pool which were distributed radially throughout the segment. Accumulation of heat in the blood of the large arteries and veins, and heat transfer from the large arteries and veins to the surrounding tissue were taken into account. The venous streams were collected together at the heart before flowing into the capillaries of the lungs. Each of the segments was subdivided into 15 radial sections, thereby allowing considerable freedom in the assignment of physical properties such as thermal conductivity and rate of blood flow to the capillaries. The program has been carefully checked for errors, and it is now being used to analyze some problems of current interest.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...