ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Research in engineering design 11 (1999), S. 116-132 
    ISSN: 1435-6066
    Keywords: Key words:Axiomatic design – Complexity – Design axioms – Periodicity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract: One of the topics that has received the attention of mathematicians, scientists and engineers is the notion of complexity. The subject is still being debated, as it lacks a common definition of complexity, concrete theories that can predict complex phenomena, and the mathematical tools that can deal with problems involving complexity. In axiomatic design, complexity is defined only when specific functional requirements or the exact nature of the query are defined. Complexity is defined as a measure of uncertainty in achieving a set of specific functions or functional requirements. Complexity is related to information, which is defined in terms of the probability of success of achieving the Functional Requirements (FRs). There are two classes of complexity: time-dependent complexity and time-independent complexity. There are two orthogonal components of time-independent complexity, i.e., real complexity and imaginary complexity. The vector sum is called absolute complexity. Real complexity of coupled design is larger than that of uncoupled or decoupled designs. Imaginary complexity can be reduced when the design matrix is known. As an example of time-independent imaginary complexity, the design of a printing machine based on xerography is discussed. There are two kinds of time-dependent real complexity: time-dependent combinatorial complexity and time-dependent periodic complexity. Using a robot-scheduling problem as an example, it is shown that a coupled design with a combinatorial complexity can be reduced to a decoupled design with periodic complexity. The introduction of periodicity simplifies the design by making it deterministic, which requires much less information. Whenever a combinatorial complexity is converted to a periodic complexity, complexity and uncertainty is reduced and design simplified.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...