ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 20 (1998), S. 275-280 
    ISSN: 1476-5535
    Keywords: Keywords: microbial biofilms; modified Robbins device (MRD); antifouling paint; tributyltin (TBT); copper
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The development of biofilms of Pseudomonas aeruginosa PAO-1 was studied using modified Robbins devices. Biofilm development was measured using viable counts, acridine orange direct counts (AODC), and a colorimetric method for exopolysaccharide (EPS). Biofilms reached their maximum population 24–72 h after inoculation on coupons with no paint or on coupons coated with marine paint VC-18 without additives. Biofilms on stainless steel contained higher numbers of total cells and of viable cells than biofilms on fiberglass or aluminum. Coating the surfaces with marine paint VC-18 resulted in decreased numbers of cells on stainless steel but had little effect on numbers of cells on fiberglass or aluminum. Addition to the paint of Cu or tributyltin (TBT), the active components in two types of antifouling paints, inhibited the initial development of biofilms. However, by 72–96 h, most biofilms contained the same number of cells as surfaces without additives as shown by both viable counts and AODC. Biofilms that formed on surfaces coated with Cu- or TBT-containing paint did not synthesize more EPS, suggesting that P. aeruginosa PAO-1 does not respond to these compounds by synthesizing more EPS, which could bind the metal and protect the cells. Rather, these biofilms may contain Cu- or TBT-resistant cells. TBT-resistant cells made up 1–10% of the viable counts in biofilms on uncoated stainless steel, but in biofilms on stainless steel coated with marine paint containing TBT, TBT-resistant cells made up as much as 50% of the population. For non-coated stainless steel surfaces, Cu-resistant cells initially made up the majority of the population, but after 48 h they made up less than 1% of the population. On Cu-coated stainless steel, Cu-resistant cells predominated through 48 h, but after 48 h they comprised less than 10% of the population. These results suggest that the growth of TBT-resistant and Cu-resistant cells contributes to biofilms of P. aeruginosa PAO-1 at early stages of development but not at later stages.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...