ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Trees 2 (1988), S. 65-72 
    ISSN: 1432-2285
    Keywords: Calcium ; Chlorine ; Ion shifts ; Mimosa pudica ; Potassium ; Seismonastic movements ; X-ray microanalysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Using energy-dispersive X-ray microanalysis, the concentrations of ions, especially potassium and chlorine, were determined in different tissues of primary and tertiary pulvini of Mimosa pudica. It was shown that stimulating the leaf was followed by ion displacements which were most striking in the outer extensor cells, resulting in turgor loss. Since Ca concentration remains relatively constant in cell walls of collapsed cells, the changes of K concentration are best described by the K:Ca ratio. After stimulation the K:Ca ratio dropped in the outer extensor of the primary pulvinus from 775.3 to 2.37 in the cytoplasm, and from 542.2 to 9.25 in the cell wall. Changes in chlorine content were less striking in the primary pulvinus. The K∶Cl ratios in some cases were lower than 1.0, which indicates that Cl content can increase, while K content is diminished. In the non-stimulated tertiary pulvini the outer extensor cells show high concentrations of Cl, but much lower Cl concentrations were found after stimulation. In contrast to the primary pulvinus the K content of the tertiary pulvini is very low. In the vascular tissues of both primary and tertiary pulvini stimulation is followed by a release of K and Cl out of the sieve element cytoplasm into the apoplast. K then appears accumulated in the cell walls of the collenchymatous tissue. These displacements lead to the assumption that the collenchymatous apoplast temporarily functions as a reservoir for K and to a lesser extent for Cl. With regard to the mechanism of leaf movement after stimulation, the accumulation of ions in the apoplast seems to be initiated by the decrease of water potential triggered by an apoplastic accumulation of unloaded sucrose (Fromm and Eschrich 1988a). The resulting turgor release in the outer extensor is accompanied by an efflux of ions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...