ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Anthocyanin ; Cold stress ; mRNA ; Zea mays
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Changes in anthocyanin content and transcript abundance for genes whose products function in general phenylpropanoid metabolism and the anthocyanin pathway were monitored in maize (Zea mays L.) seedlings during short-term, low-temperature treatment. Anthocyanin and mRNA abundance in sheaths of maize seedlings increased with the severity and duration of cold. Anthocyanin accumulation was found in all tested lines that were genotypically capable of any anthocyanin production. Within 24 h of transferring 7-d maize (B37N) seedlings to 10° C, phenylalanine ammonia-lyase (Pal) (EC 4.3.1.5)-homologous and chalcone synthase (C2) (EC 2.3.1.74) transcript levels increased at least 8- and 50-fold, respectively, and 4-coumarate:CoA ligase (4Cl) (EC 6.2.1.12)-homologous and chalcone isomerase (Chi) (EC 5.5.1.6)-homologous transcripts increased at least 3-fold over levels in unstressed plants. Time-course studies showed thatPal (EC 4.3.1.5) andC2-transcript levels remained relatively constant for the first 12 h of cold stress, dramatically increased over the next 12 h, and declined to pretreatment levels within 2 d of returning coldstressed seedlings to ambient (25° C) temperature. Transcripts4Cl (EC 6.2.1.12) andChi (EC 5.5.1.6) increased in abundance within 6 h of cold stress, exhibited no further increase over the next 36 h, and declined to pretreatment levels upon returning seedlings to 25° C. Transcripts homologous to two regulatory (R, C1) and three structural (A1,A2, andBz2) anthocyanin genes increased at least 7- to 10-fold during cold treatment, exhibiting similar kinetics of accumulation as forPal (EC 4.3.1.5) andC2 transcripts. Transcripts encoded byBz1, the anthocyanin structural gene for UDP:glucose-flavonol glucosyltransferase (EC 2.4.1.91), were relatively abundant in control tissues and exhibited only a transient increase during the cold period. Our studies suggest that the genes of the anthocyanin biosynthetic pathway can be consideredcor (Cold-Regulation) genes, and because this pathway is well defined, it is an excellent subject for characterizing plant molecular responses to low temperatures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...