ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 181 (1997), S. 309-318 
    ISSN: 1432-1351
    Keywords: Key words Honeybee ; Vibration sense ; Subgenual organ ; Mechanical model ; Stimulus transduction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The subgenual organ of the honeybee (Apis mellifera) is suspended in a haemolymph channel in the tibia of each leg. When the leg is accelerated, inertia causes the haemolymph (and the subgenual organ) to lag behind the movement of the rest of the leg. The magnitude of this phase lag determines the displacement of the subgenual organ relative to the leg and to the proximal end of the organ, which is connected to the cuticle. Oscillations of the subgenual organ are visualised during vibration stimulation of the leg, by means of stroboscopic light. Video analysis provides fairly accurate values of the amplitude and phase of the oscillations, which are compared with the predictions of a model.   The model comparison shows that the haemolymph channel can be described as an oscillating fluid-filled tube occluded by an elastic structure (probably the subgenual organ). The mechanical properties of the subgenual organ and haemolymph channel resemble those of an overdamped mass-spring system. A comparison of the threshold curve of the subgenual organ determined using electrophysiology with that predicted by the oscillating tube model suggests that the sensory cells respond to displacements of the organ relative to the leg.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...